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We present a uniform treatment of (the weak field) preparation and evolution of a superposition of overlapping
resonances. We show that the manner of (the optical) preparation has profound effect on the observed decay
dynamics when resonances overlap. Depending on the preparation pulse width, we find that the time evolution
of the population and the fluorescence are different and that, contrary to common wisdom, fluoréscence
notproportional to the autocorrelation (“survival”) function. Moreover, we find that the interference between
decaying overlapping resonances gives rise to transient surges in the total bound-state population. We also
derive an analytic expression for the evolution of the various products states from inception to assumption of
their long-time limits. We find that initially the formation of the products is dominated by off-resonance
processes in which products appear and disappear instantaneously with the pulse. Only after the pulse vanishes
does the build up of the product populations take place over time scales related to spectral features. This
average buildup is shown to be modulated by bursts due to interference between resonances.

1. Introduction excitation. In section 3 we generalize the treatment to the case

. . i . o of the superposition of overlapping resonances. In section 4
_ It'is customary to view dissociation and ionization as e giscuss the evolution of the product space. In section 5 we
irreversible processes. However, in quantum mechanics, thepresent computations exemplifying the formulation of sections

irreversibility of the decay of a state is a function of the 5_4 iy which we examine the dependence of the various
“flatness” of the continuum to which it is coupled. If the gpservables on the pulse

continuum is “flat” (i.e., the relevant cross section varies only
little over energy scales Comparable with the energetic width 2. Popu|ati0n, Survival’ and Fluorescence of a Decaying
of the decaying state), the decay of an isolated resonance issyperposition State
guaranteed to be a monotonically decreasing function oftirhe.
The same holds true for photodissociation (or photoionization)
where the decay is induced by an oscillating electromagnetic .
field. Even if the field is strong, the decay is monotonic as W(to) L= zasg(t0)|¢’s[EXp(_'Est(>/h) (1)
long as the continuum is slowly varyifg. In contrast, if the s
continuum is structure®;1° recurrences occur and the process where|W(t)Tis the system wave function at timend ¢d] s
is not entirely unidirectional. =1, ...,N are a set of electronically excited bound states. In
An interesting question arises: can interferences betweeneq 1as(t) are the preparation coefficients of the superposition
many decaying states, each coupled to a “flat” continuum, hencestate from some precursor statgbelonging to the ground
representing an irreversible decay, cause decay reversals? Ilectronic state. We consider preparation by an optical pulse,
other words, can an isolated molecule recombine spontaneouslyand if the pulse electric field, denoted &), is weak enough,
following its dissociation? A related question is whether under we can use first-order perturbation theory to obtainhat
such circumstances decay (or reversal) occurs continuously or
in bursts, as in classical mechaniés. ag4(t) = (I/R)Lo|ulpglé(wggt) (2)
In this paper we endeavor to answer these questions by
looking at a generic model of a superposition of overlapping Whereu is the transition-dipole operatomsg = (Es — Eg)/h
resonances evolving in time. We examine the high-resolution and
spectrum, the time-dependent fluorescence to the ground state, .
and the overall population. Among other things, we find that €(w,t) = f_w dt’ e(t') expfwt’) 3
the assumed proportionality between the fluorescence and the
system autocorrelation function (the “survival”) does not hold s the finite-time Fourier transform of the pulse electric field
under normal (noninstantaneous) pulse preparation conditions.amplitude. Due to this form and as shown elsewkefethe
Moreover, we find that that the overall population decay is early time behavioas(t) is dominated byoff-resonancensg
accompanied by bursts of population buildup in which reverse frequencies that are well outside tB@v) (= M« e(w,t))
flux flows from the continuum to the bound manifold. frequency profile of the pulse.
This paper is organized as follows: In section 2 we write  The overall population in the excited bound manifold at any
down general expressions for the population, survival, and subsequent timeis given as the sum over the probabilities to
fluorescence of a superposition state prepared by a pulsed laseobserve the system in each of tlglstates
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Assume that we create at tinhe= tp a superposition state,
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P(t) = Z|m§s|lp(t)[ﬂ2 (4) Contrary to the previous section, the photon-absorption step
= now prepares a continuous superpositiofEhi~[states, each
acquiring an expfiEt/h) phase factor as time progresses. ltis
We note thaiP(t) is anincoherentsum of terms (though each  still assumed that théE,n~Ostate is part of the electronically

term may be the square ofc@herentsum of amplitudes). excited manifolds, hence
The “survival”, or the system autocorrelation function, is
given as [py[En =0 (12)
Sty t) = |D4I’(t0)|111(t)|112 = |Zasg(t0) eprEStolh)QSSPIJ(t)[l]Z The electronically excited state wave packet being created
5 ®) by the process of photon absorption is therefore given as

It contains the square of a coherent sum and is in general not ()= Zf dE|E,n (B (1) exp(—iEVR)  (13)
equal to the population in the excited state manifold. n
The fluorescence to the ground state is written as,

Fo®) = Ay Wglulo T WOI = Allpglu/ PO (6)

whereag () are continuum preparation coefficients, given in
analogy to eq 3 as

ag () = (MR)EN |u|gglé(we g t) (14)

whereA is a proportionality constant depending on the emitted .
frequency andeyCis the ground state the system emits to. ~ Whereweg= (E — Eg)fi. Assuming that only the space spanned

Before proceeding further we note that the usual assumption PY thel¢ststates is optically coupled tgg[1i.e., the|ps states
that the fluorescence is proportional to the survi¥diplds true  &ct as “doorway” states), we can writ,n" |u|¢qllas
only when we assume excitation with ag(t) (i.e., instanta- _ _
negus) pulse. Under theses circumstances, we have from eqs [En |uldgl= ZI]E,n |ps bl gLl (15)
2 and 3 that

. and using eqgs 1315, we can write the amplitudes to observe
85g(0) = (/) dulgglé @) a |psstates at time as

and (using eq 5) the survival is given as

S01) = (eo/h) Y WglueldpTp PO = (/)| gl W ()T
) ®) S [ dE expiE(t — VYRBJEN TEN pg0 (16)

Comparison of eqs 6 and 8 shows that for instantaneous
(6(t)) pulses the survival is indeed proportional to the fluores-  For noninteracting (though still overlapping) resonances we
cence. However, a pulse can be considered “instantaneous” onlycan parametrize thebs|E,nCoverlap integrals &s
when its bandwidth encompasses the whole absorption spec-
trum22 In most situations this is not the case and we have from - V(sE,n)
. pJEN = - a7
eq 3 that ifty occurs after the pulse E—E—A(E) —iI'(E)/2

BIPOT= ()Y Bl (0) eXPEIEL )

a4(to) = (27i/R) pgluldylé(ws ) 9) whereV(s|E,nCdenotes the Hamiltonian matrix element between
o _ the zero-ordef¢sIstate and some zero-order continuum states
wheree(w) is the laser frequency profile |E,n;0C] The other quantities in eq 17 are defined in terms of
1 o V(s|E,n) as
(o) =5- /" dt(t) explat) (10)
2 T(E) = S 27M(SEN)P (19)
Under these circumstances, it follows from eq 5 that "
_ _ IV(SIE',n)|®
Sltot) = (21/1) Y &) eXPAE Lo/ byl Ty W () I AB) =P [dE ———— (20)
s m E-F

(11)

with P, denoting a Cauchy principal value integral. Itis possible
to adopt the parametrization of eq 17 even when ¢e
3. Decay of a Superposition of Overlapping Resonances resonances do interact. In that case the form of eq 17 arises

_ _ _ from the diagonalization of ths|(E — H) ~1|¢<sub-matrix23
The formulas developed in the previous section apply to the it fg|lows from eqgs 13 and 17 that,

case where|pd]are the eigenstates of the radiation free
Hamiltonian. If each¢s{state is coupled to a (dissociative) ; L T
continuum, it ceases to be an eigenstate and becomes a EbSPP(t)D:(l/h)ZEjbgwwng_m dt €(t) exp(-iggt/h)
resonancei.e., a set of scattering eigenstatgs~[bf different
energie€ and fragment quantum numbergpeaked about some ST R
energy value. Thancoming|E,n~[states, rather than the more Zde{V(s|E,n)V(E,n|S) exp[-IE(t — t)/ALY
conventionalE,n*[states, are used?®because (as also shown {[E— E.— AE) — iT(E)/2] x

) S

in section 4) eachk,n~Ostate correlates in the féntureto a .
single asymptotic state. [E— Es — Ag(E) +iT4(E)2]} (21)

and the survival isiot proportional to the fluorescence.
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The above expression has two poles, oné&[at Es + AE) +
iT's(E)/2] residing in the upper half of the compldéx plane,
and the other [aE = Ey + Ag(E) — iT's(E)/2] residing in the
lower-half of the complexE plane. The inclusion of the
preparation step guarantees that in our formulaticthis always
positivel” and hence the expliE(t—t')/A] factor is zero on a
sufficiently large semicircle in the lower half of the complEx

Shapiro

This equation can be solved iteratively by starting with a zero
guess in which of

EQ =E + A(E) + i (E,+ A(E)) (30)

Once a solution of eq 29 fokEs is obtained, we calculate
RcEs by solving eq 27, again in an iterative fashion, starting

plane. Hence, we can supplement the real-axis integration pathis time with Ec + A{E) + i 1nEs as the zero guess fds,

by a semicircle in the lower half-plane and obtain from the ~,.a 5 solution fORE-

residuum theorem that

i
BJW(t) = —27i Zg%glul%ﬂ(wg,g,t)

V(s|Eg,n)V(Eg,n|S)

—iEgt/h 22
exp(-iEg )ZES — E,— A(E) — iIT(EL)/2 22

where
E, =E, + A(Ey) — IT4(Ey)/2 (23)

ande(wyg g,t) is the finite time Fourier transform of the pulse,
calculated at the complex frequency yv given as

Wy o= [Ey — EJ/h=[Es + Ay — E, — iI[o/2)/h =
wy g~ iTwy J2h (24)
with wls,g = Wgg + As'/h
Equation 23 is solved by restricting(s|E,n) to be a real
function, satisfying
V(sIEn) = V(sSIRE.N) (25)

Using eq 20, we can write

IV(SIE',n)[?
= d P00 =
AJE) Z J dE £ E

IV(SIE' ) ’[(RE, — E) — il E]

Z J dE (26)
0 (RE;— E)Y + (1,E)
hence from eq 23
IV(SIE' )I*(RE — E))
RE.=E.,+ z E ; > (27)
0 (RE,—EY+ (1,E)

and

IV(SIE',n)[?

1L E.=—-1E dE'
n ; SZI (ReEs_E')2+(ImES)2

> 27V(SRE N (28)

It follows from eq 28 thatl Es is a solution of the implicit
equation

> 21 V(SR E NI
n

1.E.=

m—s

1+ Z S AEIV(SIE' ) P[(RE — E)? + (1,E)7]
" (29)

is obtained, it is substituted in eq 29

and the process is repeated until convergence. Having obtained

Es by the above iterative procedure, we make the identification
A(E)=RE,—E, andl'(E)=1_E, (31)

and proceed with the evaluation @bs|W(t)Jaccording to eq

22.
If we assume a Gaussian pulse of the form

) =—2exg—[-)" — iyt
6()_2;11/2(16)( (2(1) iw,

we can express(ws g,t) analytically>13 as

(32)

G(Ws’,g1t) =
(,/2) exp[—o&(w'g,g — )+ iaz(w'g,g — )T

{1+ sgn¢)(1 — expB*(EHIWMsgnt)BEDD} (33)

wherew's g is defined in eq 24f' =t — al's, sgnf’) = 1 for
t = 0, sgn{) = —1 fort'" < 0. W[Z] is the complex error
functiont® whose argument is given in terms of

BEY) = a(wg g — wy) + it/(2a) (34)

We see from egs 4 and 22 that the total population in the
bound (¢ manifold is given as an incoherent sum of terms,
each being the square of eoherentsum of amplitudes.
Although each amplitude of eq 22 decays due to the presence
of the imaginary part oEy (i.e., I'¢/2), the coherent sum over
these amplitudes may in principle bring about constructive
interferences, representing a momentarmgein the population.
Each surge in the total population in the bound manifold must
be interpreted as a manifestation of a transient recombination
process. It remains to be seen under what conditions such
recombinations can actually be observed.

4. Evolution of the Products’ Space

In this section we complete the derivation by examining the
time dependence of the products of the decay (dissociation)
process. We first study excitation with a continuous wave (CW)
source. In this case the observables of interest have to do with
the long time outcome of the decay process. This limit is
usually expressed in terms of the (frequency resolyedial
cross sectionss(E,n), which are the (steady state) rates of
populating products in various final channelslivided by the
incoming (photon) flux. Also of interest is the total photodis-
sociation cross section(E), given as

o(E) = Y o(En) (35)

For excitation with weak fields the partial photodissociation
cross sections are given'las
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47 |E,n~0

wE,g —

I BglulEn P (36) ) , . )
PIE,n = |E,n;,0(H [E — ie — PHP] "PHQIE,n O (42)

Assuming, as in the above, that only the manifold spanned by to obtain that

the ¢s states is coupled optically to the ground stagewe can

write eq 36 as

o(E,n) =

E' ,m;0|E,n = 6(E - E')(Sn,m +

4n2wE,g|ZEb T g— > (E—ie- E) V(E',m|s)[dE,n [(43)
g/u s—rsl—1 S

o(E,n) =
c
) Substitution in eq 39 yields
4'77: wE,g |151:‘;|;u|¢sm/(slEvn) 2
= | : | (37) [E,m0|W(t) =
C sE—E,— AJE) —iI'(E)/2 .

In the pulsed case we can no longer define a cross section. hZEﬁgl#l% (e gl) eXPLIEVRIE, M ¢t
In this case, two types of observables are of interest: (1) the t )
evolution of the populations of the various products states and ZI_W dt' e(t)) exp(-iEgt/H) [ dE
(2) the ultimate fate of the products channels in the long time sn
limit. We now examine the probability to populate the various exp[—iE(t — t')/A]V(E',m|s)(pg| E,nl]]E,n|¢sE}
product states in the long time limit. In that limit, the detection - - (44)
process invariably involves the breakup|&f(t)[lto its energy E—le—E

components. This is the case for example when the kinetic Using eq 17 we can write eq 44 as
energy of the outgoing fragments is monitored. In that case,

all coherences between the different energy eigenstafes(] (E'm;0|W(t) =

which make up the excited state wave padki(t)Cof eq 13 i

are lost. What we observe in the pulsed case are weighted —Z—E)&sw(pg e(wg g,t) exp[—iE't/A]
averages over individual energy-dependent rates. Such weighted h '

averages, denoted &, are proportional to

V(s |E'm)
+

E—E,
S [ dt e(t) exp(iEG ) [ dE
RO f O [&(we g @ulEN 7 = expIIE(t — tYHIVE MVSEMVENS)
(g1l pLV(SIE,N) 2

2c ¢t “a@ it Y [E —ie— ENE - EJ[E - E]

J dE&(wey)

S

o o This expression has three poles, twokat E' + ie andE =
When detection is performed over a finite range of nonas- E!) residing on the upper half of the complBxplane, and one
ymptotic times, no energy resolution can be imposed on the asth E) residing on the lower half of the compl&plane.
evolving wave pack_et and coheren_ce_ between its different aoqin the abovet — t' is always positive and we can supplement
energy components is not lost. In principle, we can detect the y,q e energy integration with a large semicircle in the lower

time evolution of a given product statd,m;00given as half of the complexE-plane where expfiE(t — t)] = 0 and

|(E,m;0|W(t)0°. Because the|E,m;00 states are not the obtain from the residuum theorem that

eigenstates of the full Hamiltonian, the computation of

|IE,m;0| W (t)P at finite times does not entail energy resolu- expliE't/A][E ,m0|W (t) =

tion, and the coherence between different energy components . V(S |E

of |W(t)Uis not lost. We obtain, using eq 16, that b Bl d (0 ) (sIE'm) _
hZ SaCy R E.

' . to i
[E',m0|W(t) = @/h)stgwwgm ", dt’ e(t') exp(iEt/h) expl-iw, o AV(E MIVISEE, IV(E,NIS)

271y e(Wy )

Y J dE exp[-iE(t — t)/A]E mO|E,n TEN .0 (39) A [Es — EllEs — Ed
0 (46)
Defining the (P) projection operator on the space spannedwhere wg = [E¢ + A¢ — E' — i['¢/2]/h.
by the |E,n;00states as The second term of eq 46 decaystas « due to thel's/2h
imaginary parts of the y¢ frequencies. Hence the first term
P= z f dE | E,n;OE,n;0| (40) in eq 46 yields the long time limit of exjf't/A[[E',m;0|W(t)(]
S
lim explE't/A]E ,m;0| W (t) =
and the (Q) projection operator on the space spanned by thet—«
|psCIstates as 27 Bl B )V(s’|E,m) 27riEHE 16 E )
— W J—=—1[FE',m We
hZ s 1Py e\WE g E-E, * M9y WE g

- 41
Q Z [oXITN (41) 47

we can apply the general relatfobetween the components of  The simplicity of eq 47, which leads directly to the cross-section



9574 J. Phys. Chem. A, Vol. 102, No. 47, 1998

expressions of eqs 36 and 37, is the reason we usadbming
states|E,n"Lin photodissociation problens5.16

At nonasymptotic times, the second term in eq 46 does not
vanish. The probability to observe a final stiem;0C] given
as

Pe (1) = |E m0[ ¥ (48)

is therefore influenced by the (constructive or destructive)
interference between the first (DC) term and the second
oscillatory term of eq 46.

In the pulsed case we might be interested in the energy
summed branching ratios. If many resonances contribute to the
process the ratio between the partial cross sectig(isn) is a

result of a complicated interference because the dependence or

n, embodied in th&/(s|E,n) terms of eq 37, is entangled in the
summation oves. However, if one resonance dominates the
dissociation process it follows from eq 38 that the branching
ratio R/Ry is given as

R/R, =
J dEe*(we ) IV(SIEN)||E — Eq — A(E) — iIT(E)/2[°

J dEe*(we ) I(SEN)|/|E — Eg — A(E) — iIT(E)/2)?
(49)

If |V(SIE,n’)|? varies much more slowly with energy than the
laser power spectrund®(weg) (this is the “slowly varying

continuum approximatio”-1%which is often realized), we have
that,
R/Ry = IV(SIEN) I/ IV(SIE,N) 2 (50)

whereE is some mean energy. We see that in this case the

dependence of the branching ratio on the pulse shape has

completely disappeared!

If many resonances contribute to the process, we can no
longer factor out the power spectrum from the expression for
the branching ratios. It is clear, however, that even in this case
the branching ratios to the various dissociation channels are
independent of the phase of the electric field which make up
the puls&2021 This result holds true even in the strong field
regime, provided that the optical excitation (in the present case,
that of the superposition of the overlapping resonances) involves
no more tharonecommon “precursor” statg(e.g.,|¢qlin the
present case).

5. Computational Examples

In this section we illustrate the outcome of our formulation
in the case, depicted in Figure 1, of a Morse potential crossed
by the repulsive part of another Morse potential. The two curves
are coupled by constant coupling term of 100 @min
magnitude, which is roughly the coupling between Bhstate
andyY state in I1Br1%22 The reduced mass of the system is chosen
as 23 amu, the ground state fundamental frequency as 209 cm
and the excited state fundamental frequency as 15%cm
Because curve-crossing situations allow for a wide variation
in the resultingV(s|E,n) matrix element® and theEs + As
energy spacing®, the model hopefully addresses many of the
generic featurés$23-25 of decaying molecular systems.

Having calculatedts and V(s|E,n) resulting from the model
of Figure 1, andAs andT’s according to eqs 1820, we obtain
[pP() O from eq 22). P(t), the population in the bound
manifold, is obtained from eq 4, arig(t), the fluorescence to
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Figure 1. A schematic illustration of the excitation and decay of a
superposition state. A system initially in statgis excited by pulse
with an e(w) profile, to a bound manifold, spanned by thestates,
coupled to a continuum manifold, spanned by¥h@,n;0) states. While
evolving, the system may fluoresce back to the ground states, emitting
bursts of photons characterized by profiles such:@s).

1 | L

60

50 4
40+

I 30

bzo_

10

)

T
22200

ULIsLJ

T
22500 22600

0

T T
22100 22300 22400

Energy (cm™)

Figure 2. Total photodissociation cross section resulting from the
model depicted in Figure 1.

the ground state (or other states),from eq 6. The cross
section,a(E,n), is obtained from eq 37 and the evolution of the
product populatiorPe (t) from eqgs 47 and 48.

We first display (in Figure 2) the total cross sectiaf). It
is composed of a series of interfering resonances of varying
widths. The essence of this interference is not that resonances
interact via some nondiagonal bound-continuum matrix elements
of the QE — H)~1Q submatrix, but that(E,n) is given as the
square of a coherent sum. As mentioned above, even in the
case where resonances do interact via some off-diagonal matrix
elements, it is always possible (by diagonalizing thé= Q{
H)~1Q matrix) to recast the formulas for the cross section (and
other quantities such @t) andFg(t)) as resulting from a sum
of noninteracting terms.

In contrast too(E,n), the temporal behavior of the system is
very much a function of the laser pulse phase and shape. In
Figure 3a,b we look at the time evolution under excitation with
a relatively “narrow” pulse (frequency fwhm of 50 ci
corresponding to temporal fwhm o600 fs), centered at 22 500
cmL. As can be seen in the cross-section plot of Figure 2, at
that central frequency and bandwidth only two resonances are
being excited. Indeed, as shown in Figure 3a, the total
population displays an almost monotonic decay, modulated by
a simple beat term. This modulation is more pronounced in
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Figure 4. (a, top) Same as in Figure 3a for excitation wi_th a pulse
Figure 3. (a, top) Total population in the bound manifold and the ~centered at 22 430 and bandwidth of 1(i).bottom) Same as in Figure
fluorescence to the ground vibrational state as a function of time for 3b for the pulse parameters of part a.

excitation by a pulse whose central frequency is 22 500*camd
bandwidth of 50. (b, bottom) Evolution of seven of the product states Figure 4a,b, or to 1000, as in Figure 5a,b, we allow more and

for the case studied in part a. more resonances to contribute to the process. Indeed we find
the “backward bursts” of the population decay to become more
the fluorescence signal: After the fast, off-resonance dominatedand more pronounced. This can best be seen by comparing
initial rise and fall, the fluorescence signal undergoes a seriesFigure 4a to Figure 5a and both figures to the mild oscillations
of recurrences at the same beat frequency which modulates thef Figure 3a.
total bound-state population. Although backward bursts have not yet been observed, a
The temporal evolution of the product state distribution is steplike behavior in the decay pattern has been recorded in Nal
shown in Figure 3b. The most surprising aspect of that figure by Zewail et af who monitored theappearanceof the Na
is that at early times the product populations mirror the pulse product. In that study, the steplike behavior was attributed to
evolution: the product states appear and disappear with the risebursts occurring while a localized superposition state passes
and fall of the pulse in a manner analogous to the behavior of through the ionie-covalent crossing region. No decay was
the bound state populations. Contrary to classical mechanics,thought to occur when the wave packet is outside these regions.
and all theories that do not include the process of prepara-The present work shows that such bursts are much more
tion,>2627we see that there is no delay between the onset of ubiquitous in that they occur in the absence of localization, can
the pulse and the first appearance of flux in the products space.actually give rise to backward flows, and are simply due to
This behavior is, as in the fluorescence signal, due to the interferences between individually decaying terms.
contributions of off-resonance levels. Only after the first 600 A comparison of the population to the fluorescenégt) of
fs, when the pulse is essentially over, does an on-resonanceeq 6), is given in Figure 4a and 5a. The two quantities are
decay develop as evidenced by the emergence of a beat patterseen to exhibit a different behavior. In particular, the periodicity
which converges to the asymptotic values dictated by the first of the backward bursts in the population does not coincide with
(DC) term of eq 46. In a sense, because the asymptotic valuesthe recurrences in the fluorescence signal. The two quantities
are known all along, one can treat the final outcome as are different because the fluorescence signal is obtained as the
“predestined”: According to eq 46, all time evolution is viewed square of a double (“coherent”) sum of terms (oseand s,
as arising from the interference of the known final outcome see eqs 6 and 22, whereas the population is a result of an
with decaying terms. “incoherent” sum (eq 4), of squares, each being a single sum
The decay dynamics becomes even richer when we excite atovers (eq 22).
22 430 cn1! where, as shown in Figure 2, a larger number of  The fluorescence signal recurs whenever the superposition
resonances overlap. By increasing the bandwidth to 100, as instate returns to a region of favorable Frar€ondon overlaps
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6 ' ' ' ' ' completely dominate the decay process. Only after the pulse
©,=22,430 em~' A=1000 cm ' is over do we see the decay of the population of the bound
space and the buildup of the product space populations governed
by time constants which are related to the resonance spectral
features. Even at such late times the evolution of the bound
state and product space populations is far from being intuitive.
In particular, we have demonstrated the existence of bursts of
flux reversals in which the system periodically partially
57 B recombines while undergoing a dissociative decay process.
An additional finding of this paper is that the assumption
2 L that fluorescence measures the system autocorrelation function
is simply not true for overlapping resonances: the fluorescence,
i fluorescence autocorrelation and the total bound state population behave
S 1 32 3§ 1 4 &  dfeenty. | |
time (psec) T_he computations pres_ented here may necessitate a reexami-
nation of the interpretation of past experiments where the
1 dissociative decay and radiationless transitions in large (and
small) molecules have been probed.

total population

Population

1

A=1000 cm = ©,=22430 cm’
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