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We present a uniform treatment of (the weak field) preparation and evolution of a superposition of overlapping
resonances. We show that the manner of (the optical) preparation has profound effect on the observed decay
dynamics when resonances overlap. Depending on the preparation pulse width, we find that the time evolution
of the population and the fluorescence are different and that, contrary to common wisdom, fluorescenceis
notproportional to the autocorrelation (“survival”) function. Moreover, we find that the interference between
decaying overlapping resonances gives rise to transient surges in the total bound-state population. We also
derive an analytic expression for the evolution of the various products states from inception to assumption of
their long-time limits. We find that initially the formation of the products is dominated by off-resonance
processes in which products appear and disappear instantaneously with the pulse. Only after the pulse vanishes
does the build up of the product populations take place over time scales related to spectral features. This
average buildup is shown to be modulated by bursts due to interference between resonances.

1. Introduction

It is customary to view dissociation and ionization as
irreversible processes. However, in quantum mechanics, the
irreversibility of the decay of a state is a function of the
“flatness” of the continuum to which it is coupled. If the
continuum is “flat” (i.e., the relevant cross section varies only
little over energy scales comparable with the energetic width
of the decaying state), the decay of an isolated resonance is
guaranteed to be a monotonically decreasing function of time.1-5

The same holds true for photodissociation (or photoionization)
where the decay is induced by an oscillating electromagnetic
field. Even if the field is strong, the decay is monotonic as
long as the continuum is slowly varying.6,7 In contrast, if the
continuum is structured,8-10 recurrences occur and the process
is not entirely unidirectional.

An interesting question arises: can interferences between
many decaying states, each coupled to a “flat” continuum, hence
representing an irreversible decay, cause decay reversals? In
other words, can an isolated molecule recombine spontaneously
following its dissociation? A related question is whether under
such circumstances decay (or reversal) occurs continuously or
in bursts, as in classical mechanics.11

In this paper we endeavor to answer these questions by
looking at a generic model of a superposition of overlapping
resonances evolving in time. We examine the high-resolution
spectrum, the time-dependent fluorescence to the ground state,
and the overall population. Among other things, we find that
the assumed proportionality between the fluorescence and the
system autocorrelation function (the “survival”) does not hold
under normal (noninstantaneous) pulse preparation conditions.
Moreover, we find that that the overall population decay is
accompanied by bursts of population buildup in which reverse
flux flows from the continuum to the bound manifold.

This paper is organized as follows: In section 2 we write
down general expressions for the population, survival, and
fluorescence of a superposition state prepared by a pulsed laser

excitation. In section 3 we generalize the treatment to the case
of the superposition of overlapping resonances. In section 4
we discuss the evolution of the product space. In section 5 we
present computations exemplifying the formulation of sections
2-4 in which we examine the dependence of the various
observables on the pulse

2. Population, Survival, and Fluorescence of a Decaying
Superposition State

Assume that we create at timet ) t0 a superposition state,

where|Ψ(t)〉 is the system wave function at timet and |φs〉, s
) 1, ...,N are a set of electronically excited bound states. In
eq 1as,g(t) are the preparation coefficients of the superposition
state from some precursor state|φg〉 belonging to the ground
electronic state. We consider preparation by an optical pulse,
and if the pulse electric field, denoted asε(t), is weak enough,
we can use first-order perturbation theory to obtain that12

whereµ is the transition-dipole operator,ωs,g ≡ (Es - Eg)/p
and

is the finite-time Fourier transform of the pulse electric field
amplitude. Due to this form and as shown elsewhere12,13 the
early time behavioras,g(t) is dominated byoff-resonanceωs,g

frequencies that are well outside theεj(ω) (≡ lim tf∞ ε(ω,t))
frequency profile of the pulse.

The overall population in the excited bound manifold at any
subsequent timet is given as the sum over the probabilities to
observe the system in each of the|φs〉 states

|Ψ(t0)〉 ) ∑
s

as,g(t0)|φs〉 exp(-iEst0/p) (1)

as,g(t) ) (i/p)〈φs|µ|φg〉ε(ωs,g,t) (2)

ε(ω,t) ≡ ∫-∞

t
dt′ ε(t′) exp(iωt′) (3)
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We note thatP(t) is an incoherentsum of terms (though each
term may be the square of acoherentsum of amplitudes).

The “survival”, or the system autocorrelation function, is
given as

It contains the square of a coherent sum and is in general not
equal to the population in the excited state manifold.

The fluorescence to the ground state is written as,

whereA is a proportionality constant depending on the emitted
frequency and|φg〉 is the ground state the system emits to.

Before proceeding further we note that the usual assumption
that the fluorescence is proportional to the survival,14 holds true
only when we assume excitation with anε0δ(t) (i.e., instanta-
neous) pulse. Under theses circumstances, we have from eqs
2 and 3 that

and (using eq 5) the survival is given as

Comparison of eqs 6 and 8 shows that for instantaneous
(δ(t)) pulses the survival is indeed proportional to the fluores-
cence. However, a pulse can be considered “instantaneous” only
when its bandwidth encompasses the whole absorption spec-
trum.12 In most situations this is not the case and we have from
eq 3 that ift0 occurs after the pulse

whereεj(ω) is the laser frequency profile

Under these circumstances, it follows from eq 5 that

and the survival isnot proportional to the fluorescence.

3. Decay of a Superposition of Overlapping Resonances

The formulas developed in the previous section apply to the
case where|φs〉 are the eigenstates of the radiation free
Hamiltonian. If each|φs〉 state is coupled to a (dissociative)
continuum, it ceases to be an eigenstate and becomes a
resonance, i.e., a set of scattering eigenstates|E,n-〉 of different
energiesE and fragment quantum numbersn, peaked about some
energy value. Theincoming|E,n-〉 states, rather than the more
conventional|E,n+〉 states, are used,2,15,16because (as also shown
in section 4) each|E,n-〉 state correlates in the farfuture to a
singleasymptotic state.

Contrary to the previous section, the photon-absorption step
now prepares a continuous superposition of|E,n-〉 states, each
acquiring an exp(-iEt/p) phase factor as time progresses. It is
still assumed that the|E,n-〉 state is part of the electronically
excited manifolds, hence

The electronically excited state wave packet being created
by the process of photon absorption is therefore given as

whereaE,n(t) are continuum preparation coefficients, given in
analogy to eq 3 as

whereωE,g ≡ (E - Eg)/p. Assuming that only the space spanned
by the|φs〉 states is optically coupled to|φg〉 (i.e., the|φs〉 states
act as “doorway” states), we can write〈E,n-|µ|φg〉 as

and using eqs 13-15, we can write the amplitudes to observe
a |φs〉 states at timet as

For noninteracting (though still overlapping) resonances we
can parametrize the〈φs|E,n-〉 overlap integrals as2

whereV(s|E,n〉 denotes the Hamiltonian matrix element between
the zero-order|φs〉 state and some zero-order continuum states
|E,n;0〉. The other quantities in eq 17 are defined in terms of
V(s|E,n) as

with PV denoting a Cauchy principal value integral. It is possible
to adopt the parametrization of eq 17 even when theφs

resonances do interact. In that case the form of eq 17 arises
from the diagonalization of the〈φs|(E - H)-1|φs′〉 sub-matrix.2,3

It follows from eqs 13 and 17 that,

P(t) ) ∑
s

|〈φs|Ψ(t)〉|2 (4)

S(t0,t) ≡ |〈Ψ(t0)|Ψ(t)〉|2 ) |∑
s

as,g(t0) exp(iEst0/p)〈φs|Ψ(t)〉|2
(5)

Fg(t) ) A|∑
s

〈φg|µ|φs〉〈φs|Ψ(t)〉|2 ) A|〈φg|µ|Ψ(t)〉|2 (6)

as,g(0) ) (i/p)〈φs|µ|φg〉ε0 (7)

S(0,t) ) (ε0/p)∑
s

〈φg|µ|φs〉〈φs|Ψ(t)〉|2 ) (ε0/p)2|〈φg|µ|Ψ(t)〉|2
(8)

as,g(t0) ) (2πi/p)〈φs|µ|φg〉εj(ωs,g) (9)

εj(ω) ≡ 1
2π∫-∞

∞
dt ε(t) exp(iωt) (10)

S(t0,t) ) (2π/p)∑
s

εj(ωs,g) exp(iEst0/p)〈φg|µ|φs〉〈φs|Ψ(t)〉|2
(11)

〈φg|E,n-〉 ) 0 (12)

|Ψ(t)〉 ) ∑
n
∫ dE|E,n-〉aE,n(t) exp(-iEt/p) (13)

aE,n(t) ) (i/p)〈E,n-|µ|φg〉ε(ωE,g,t) (14)

〈E,n-|µ|φg〉 ) ∑
s′

〈E,n-|φs′〉〈φs′|µ|φg〉 (15)

〈φs|Ψ(t)〉 ) (i/p)∑
s′

〈φs′|µ|φg〉∫-∞

t
dt′ ε(t′) exp(-iEgt′/p)

∑
n
∫ dE exp[-iE(t - t′)/p]〈φs|E,n-〉〈E,n-|φs′〉 (16)

〈φs|E,n-〉 )
V(s|E,n)

E - Es - ∆s(E) - iΓs(E)/2
(17)

Γs(E) ≡ ∑
n

2π|V(s|E,n)|2 (19)

∆s(E) ≡ PV∑
n
∫ dE′

|V(s|E′,n)|2

E - E′
(20)

〈φs|Ψ(t)〉 ) (i/p)∑
s′

〈φs′|µ|φg〉 ∫-∞

t
dt′ ε(t′) exp(-iEgt′/p)

∑
n
∫ dE{V(s|E,n)V(E,n|s′) exp[-iE(t - t′)/p]}/

{[E - Es - ∆s(E) - iΓs(E)/2] ×
[E - Es′ - ∆s′(E) + iΓs′(E)/2]} (21)
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The above expression has two poles, one [atE ) Es + ∆s(E) +
iΓs(E)/2] residing in the upper half of the complexE plane,
and the other [atE ) Es′ + ∆s′(E) - iΓs′(E)/2] residing in the
lower-half of the complexE plane. The inclusion of the
preparation step guarantees that in our formulationt-t′ is always
positive,17 and hence the exp[-iE(t-t′)/p] factor is zero on a
sufficiently large semicircle in the lower half of the complexE
plane. Hence, we can supplement the real-axis integration path
by a semicircle in the lower half-plane and obtain from the
residuum theorem that

where

andε(ws′,g,t) is the finite time Fourier transform of the pulse,
calculated at the complex frequency ws′,g, given as

with ω′s′,g ) ωs′,g + ∆s′/p.
Equation 23 is solved by restrictingV(s|E,n) to be a real

function, satisfying

Using eq 20, we can write

hence from eq 23

and

It follows from eq 28 thatImEs is a solution of the implicit
equation

This equation can be solved iteratively by starting with a zero
guess in which of

Once a solution of eq 29 forImEs is obtained, we calculate
ReEs by solving eq 27, again in an iterative fashion, starting
this time withEs + ∆s(Es) + iImEs as the zero guess forEs.
Once a solution forReEs is obtained, it is substituted in eq 29
and the process is repeated until convergence. Having obtained
Es by the above iterative procedure, we make the identification

and proceed with the evaluation of〈φs|Ψ(t)〉 according to eq
22.

If we assume a Gaussian pulse of the form

we can expressε(ωs′,g,t) analytically12,13 as

whereω′s′,g is defined in eq 24,t′ ≡ t - R2Γs′, sgn(t′) ) 1 for
t′ g 0, sgn(t′) ) -1 for t′ < 0. W[z] is the complex error
function18 whose argument is given in terms of

We see from eqs 4 and 22 that the total population in the
bound (|φs〉) manifold is given as an incoherent sum of terms,
each being the square of acoherent sum of amplitudes.
Although each amplitude of eq 22 decays due to the presence
of the imaginary part ofEs′ (i.e., Γs′/2), the coherent sum over
these amplitudes may in principle bring about constructive
interferences, representing a momentarysurgein the population.
Each surge in the total population in the bound manifold must
be interpreted as a manifestation of a transient recombination
process. It remains to be seen under what conditions such
recombinations can actually be observed.

4. Evolution of the Products’ Space

In this section we complete the derivation by examining the
time dependence of the products of the decay (dissociation)
process. We first study excitation with a continuous wave (CW)
source. In this case the observables of interest have to do with
the long time outcome of the decay process. This limit is
usually expressed in terms of the (frequency resolved)partial
cross sectionsσ(E,n), which are the (steady state) rates of
populating products in various final channelsn divided by the
incoming (photon) flux. Also of interest is the total photodis-
sociation cross sectionσ(E), given as

For excitation with weak fields the partial photodissociation
cross sections are given as12

Es
(0) ) Es + ∆s(Es) + iΓs(Es + ∆s(Es)) (30)

∆s(Es) ≡ ReEs - Es, andΓs(Es) ≡ ImEs (31)

ε(t) )
εa

2π1/2R
exp[-( t

2R)2
- iωat] (32)

ε(ws′,g,t) )

(εa/2) exp[-R2(ω′s′,g - ωa)
2 + iR2(ω′s′,g - ωa)Γs′]

{1 + sgn(t′)(1 - exp[â2(E,t)]W[sgn(t′)â(E,t)])} (33)

â(E,t) ) R(ws′,g - ωa) + it/(2R) (34)

σ(E) ) ∑
n

σ(E,n) (35)

〈φs|Ψ(t)〉 ) -2πi∑
s′

i

p
〈φs′|µ|φg〉ε(ws′,g,t)

exp(-iEs′t/p)∑
n

V(s|Es′,n)V(Es′,n|s′)

Es′ - Es - ∆s(Es′) - iΓs(Es′)/2
(22)

Es′ ) Es′ + ∆s′(Es′) - iΓs′(Es′)/2 (23)

ws′,g ≡ [Es′ - Eg]/p ) [Es′ + ∆s′ - Eg - iΓs′/2]/p )
ω′s′,g - iΓω′s′,g/2p (24)

V(s|E,n) ) V(s|ReE,n) (25)

∆s(Es) ) ∑
n
∫ dE′

|V(s|E′,n)|2

Es - E′
)

∑
n
∫ dE′

|V(s|E′,n)|2[(ReEs - E′) - iImEs]

(ReEs - E′)2 + (ImEs)
2

(26)

ReEs ) Es + ∑
n
∫ dE′

|V(s|E′,n)|2(ReEs - E′)

(ReEs - E′)2 + (ImEs)
2

(27)

ImEs ) -ImEs ∑
n
∫ dE′

|V(s|E′,n)|2

(ReEs - E′)2 + (ImEs)
2

+

∑
n

2π|V(s|ReEs,n)|2 (28)

ImEs )

∑
n

2π|V(s|ReEs,n)|2

1 + ∑
n
∫ dE′|V(s|E′,n)|2/[(ReEs - E′)2 + (ImEs)

2]

(29)
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Assuming, as in the above, that only the manifold spanned by
theφs states is coupled optically to the ground stateφg, we can
write eq 36 as

In the pulsed case we can no longer define a cross section.
In this case, two types of observables are of interest: (1) the
evolution of the populations of the various products states and
(2) the ultimate fate of the products channels in the long time
limit. We now examine the probability to populate the various
product states in the long time limit. In that limit, the detection
process invariably involves the breakup of|Ψ(t)〉 to its energy
components. This is the case for example when the kinetic
energy of the outgoing fragments is monitored. In that case,
all coherences between the different energy eigenstates|E,n-〉
which make up the excited state wave packet|Ψ(t)〉 of eq 13
are lost. What we observe in the pulsed case are weighted
averages over individual energy-dependent rates. Such weighted
averages, denoted asRn, are proportional to

When detection is performed over a finite range of nonas-
ymptotic times, no energy resolution can be imposed on the
evolving wave packet and coherence between its different
energy components is not lost. In principle, we can detect the
time evolution of a given product state|E,m;0〉 given as
|〈E,m;0|Ψ(t)〉|2. Because the|E,m;0〉 states are not the
eigenstates of the full Hamiltonian, the computation of
|〈E,m;0|Ψ(t)〉|2 at finite times does not entail energy resolu-
tion, and the coherence between different energy components
of |Ψ(t)〉 is not lost. We obtain, using eq 16, that

Defining the (P) projection operator on the space spanned
by the |E,n;0〉 states as

and the (Q) projection operator on the space spanned by the
|φs〉 states as

we can apply the general relation2 between the components of

|E,n-〉

to obtain that

Substitution in eq 39 yields

Using eq 17 we can write eq 44 as

This expression has three poles, two (atE ) E′ + iε andE )
Es

*) residing on the upper half of the complexE-plane, and one
(at E ) Es′) residing on the lower half of the complexE-plane.
As in the above,t - t′ is always positive and we can supplement
the real energy integration with a large semicircle in the lower
half of the complexE-plane where exp[-iE(t - t′)] ) 0 and
obtain from the residuum theorem that

where ws′,E′ ) [Es′ + ∆s′ - E′ - iΓs′/2]/p.
The second term of eq 46 decays ast f ∞ due to theΓs′/2p

imaginary parts of the ws′E′ frequencies. Hence the first term
in eq 46 yields the long time limit of exp[iE′t/p[〈E′,m;0|Ψ(t)〉

The simplicity of eq 47, which leads directly to the cross-section

σ(E,n) )
4π2ωE,g

c
|〈φg|µ|E,n-〉|2 (36)

σ(E,n) )
4π2ωE,g

c
|∑

s

〈φg|µ|φs〉〈φs|E,n-〉|2

)
4π2ωE,g

c
|∑

s

〈φg|µ|φs〉V(s|E,n)

E - Es - ∆s(E) - iΓs(E)/2
|2 (37)

Rn ∝ ∫ dE |εj(ωE,g)〈φg|µ|E,n-〉|2 )

∫ dE εj2(ωE,g)|∑
s

〈φg|µ|φs〉V(s|E,n)

E - Es - ∆s(E) - iΓs(E)/2
|2

(38)

〈E′,m;0|Ψ(t)〉 ) (i/p)∑
s′

〈φs′|µ|φg〉 ∫-∞

t
dt′ ε(t′) exp(-iEgt′/p)

∑
n
∫ dE exp[-iE(t - t′)/p]〈E′,m;0|E,n-〉〈E,n-|φs′〉 (39)

P ) ∑
s
∫ dE | E,n;0〉〈E,n;0| (40)

Q ) ∑
s

|φs〉〈φs| (41)

P|E,n-〉 ) |E,n;0〉 + [E - iε - PHP]-1PHQ|E,n-〉 (42)

〈E′,m;0|E,n-〉 ) δ(E - E′)δn,m +

∑
s

(E - iε - E′)-1V(E′,m|s)〈φs|E,n-〉 (43)

〈E′,m;0|Ψ(t)〉 )

i

p
∑
s′

〈φs′|µ|φg〉{ε(ωE′,g,t) exp[-iE′t/p]〈E′,m-|φs′〉 +

∑
s,n
∫-∞

t
dt′ ε(t′) exp(-iEgt′/p) ∫ dE

exp[-iE(t - t′)/p]V(E′,m|s)〈φs|E,n-〉〈E,n-|φs′〉

E - iε - E′ } (44)

〈E′m;0|Ψ(t)〉 )
i

p
∑
s′

〈φs′|µ|φg〉{ε(ωE′,g,t) exp[-iE′t/p]
V(s′|E′,m)

E′ - Es′

+

∑
s,n

∫-∞

t
dt′ ε(t′) exp(-iEgt′/p) ∫ dE

exp[-iE(t - t′)/p]V(E′,m|s)V(s|E,n)V(E,n|s′)

[E - iε - E′][E - Es
*][E - Es′]

} (45)

exp[iE′t/p]〈E′,m;0|Ψ(t)〉 )

i

p
∑
s′

〈φ′|µ|φg〉{ε(ωE′,g,t)
V(s′|E′,m)

E′ - Es′

-

2πi∑
s,n

ε(ws′,g,t)
exp[-iws′,E′,t]V(E′,m|s)V(s|Es′,n)V(Es′,n|s′)

[Es′ - E′][Es′ - Es
*] }

(46)

lim
tf∞

exp[iE′t/p]〈E′,m;0|Ψ(t)〉 )

2πi

p
∑
s′

〈φs′|µ|φg〉εj(ωE′,g)
V(s′|E,m)

E′ - Es′

)
2πi

p
〈E′,m-|µ|φg〉εj(ωE′,g)

(47)
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expressions of eqs 36 and 37, is the reason we use theincoming
states|E,n-〉 in photodissociation problems.2,15,16

At nonasymptotic times, the second term in eq 46 does not
vanish. The probability to observe a final state|E,m;0〉, given
as

is therefore influenced by the (constructive or destructive)
interference between the first (DC) term and the second
oscillatory term of eq 46.

In the pulsed case we might be interested in the energy
summed branching ratios. If many resonances contribute to the
process the ratio between the partial cross sections,σ(E,n) is a
result of a complicated interference because the dependence on
n, embodied in theV(s|E,n) terms of eq 37, is entangled in the
summation overs. However, if one resonance dominates the
dissociation process it follows from eq 38 that the branching
ratio Rn/Rn′ is given as

If |V(s|E,n′)|2 varies much more slowly with energy than the
laser power spectrumεj2(ωE,g) (this is the “slowly varying
continuum approximation”6,7,19which is often realized), we have
that,

whereEh is some mean energy. We see that in this case the
dependence of the branching ratio on the pulse shape has
completely disappeared!

If many resonances contribute to the process, we can no
longer factor out the power spectrum from the expression for
the branching ratios. It is clear, however, that even in this case
the branching ratios to the various dissociation channels are
independent of the phase of the electric field which make up
the pulse6,20,21 This result holds true even in the strong field
regime, provided that the optical excitation (in the present case,
that of the superposition of the overlapping resonances) involves
no more thanonecommon “precursor” state,6 (e.g.,|φg〉 in the
present case).

5. Computational Examples

In this section we illustrate the outcome of our formulation
in the case, depicted in Figure 1, of a Morse potential crossed
by the repulsive part of another Morse potential. The two curves
are coupled by constant coupling term of 100 cm-1 in
magnitude, which is roughly the coupling between theB state
andYstate in IBr.10,22 The reduced mass of the system is chosen
as 23 amu, the ground state fundamental frequency as 200 cm-1,
and the excited state fundamental frequency as 15 cm-1.
Because curve-crossing situations allow for a wide variation
in the resultingV(s|E,n) matrix elements22 and theEs + ∆s

energy spacings,22 the model hopefully addresses many of the
generic features1,5,23-25 of decaying molecular systems.

Having calculatedEs andV(s|E,n) resulting from the model
of Figure 1, and∆s andΓs according to eqs 18-20, we obtain
〈φs|Ψ(t)〉 from eq 22). P(t), the population in the bound
manifold, is obtained from eq 4, andFg(t), the fluorescence to

the ground state (or other states),- from eq 6. The cross
section,σ(E,n), is obtained from eq 37 and the evolution of the
product populationPE′,m(t) from eqs 47 and 48.

We first display (in Figure 2) the total cross sectionσ(E). It
is composed of a series of interfering resonances of varying
widths. The essence of this interference is not that resonances
interact via some nondiagonal bound-continuum matrix elements
of the Q(E - H)-1Q submatrix, but thatσ(E,n) is given as the
square of a coherent sum. As mentioned above, even in the
case where resonances do interact via some off-diagonal matrix
elements, it is always possible (by diagonalizing the Q(E -
H)-1Q matrix) to recast the formulas for the cross section (and
other quantities such asP(t) andFg(t)) as resulting from a sum
of noninteracting terms.

In contrast toσ(E,n), the temporal behavior of the system is
very much a function of the laser pulse phase and shape. In
Figure 3a,b we look at the time evolution under excitation with
a relatively “narrow” pulse (frequency fwhm of 50 cm-1,
corresponding to temporal fwhm of∼600 fs), centered at 22 500
cm-1. As can be seen in the cross-section plot of Figure 2, at
that central frequency and bandwidth only two resonances are
being excited. Indeed, as shown in Figure 3a, the total
population displays an almost monotonic decay, modulated by
a simple beat term. This modulation is more pronounced in

PE′,m(t) ) |〈E′,m;0|Ψ(t)〉|2 (48)

Rn/Rn′ )

∫ dEεj2(ωE,g)|V(s|E,n)|2/|E - Es - ∆s(E) - iΓs(E)/2|2

∫ dEεj2(ωE,g)|V(s|E,n′)|2/|E - Es - ∆s(E) - iΓs(E)/2|2
(49)

Rn/Rn′ ) |V(s|Eh,n)|2/|V(s|Eh,n′)|2 (50)

Figure 1. A schematic illustration of the excitation and decay of a
superposition state. A system initially in stateφg is excited by pulse
with an ε(ω) profile, to a bound manifold, spanned by theφs states,
coupled to a continuum manifold, spanned by theΨ(E,n;0) states. While
evolving, the system may fluoresce back to the ground states, emitting
bursts of photons characterized by profiles such asεf(ω).

Figure 2. Total photodissociation cross section resulting from the
model depicted in Figure 1.
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the fluorescence signal: After the fast, off-resonance dominated
initial rise and fall, the fluorescence signal undergoes a series
of recurrences at the same beat frequency which modulates the
total bound-state population.

The temporal evolution of the product state distribution is
shown in Figure 3b. The most surprising aspect of that figure
is that at early times the product populations mirror the pulse
evolution: the product states appear and disappear with the rise
and fall of the pulse in a manner analogous to the behavior of
the bound state populations. Contrary to classical mechanics,
and all theories that do not include the process of prepara-
tion,5,26,27 we see that there is no delay between the onset of
the pulse and the first appearance of flux in the products space.
This behavior is, as in the fluorescence signal, due to the
contributions of off-resonance levels. Only after the first 600
fs, when the pulse is essentially over, does an on-resonance
decay develop as evidenced by the emergence of a beat pattern
which converges to the asymptotic values dictated by the first
(DC) term of eq 46. In a sense, because the asymptotic values
are known all along, one can treat the final outcome as
“predestined”: According to eq 46, all time evolution is viewed
as arising from the interference of the known final outcome
with decaying terms.

The decay dynamics becomes even richer when we excite at
22 430 cm-1 where, as shown in Figure 2, a larger number of
resonances overlap. By increasing the bandwidth to 100, as in

Figure 4a,b, or to 1000, as in Figure 5a,b, we allow more and
more resonances to contribute to the process. Indeed we find
the “backward bursts” of the population decay to become more
and more pronounced. This can best be seen by comparing
Figure 4a to Figure 5a and both figures to the mild oscillations
of Figure 3a.

Although backward bursts have not yet been observed, a
steplike behavior in the decay pattern has been recorded in NaI
by Zewail et al.8 who monitored theappearanceof the Na
product. In that study, the steplike behavior was attributed to
bursts occurring while a localized superposition state passes
through the ionic-covalent crossing region. No decay was
thought to occur when the wave packet is outside these regions.
The present work shows that such bursts are much more
ubiquitous in that they occur in the absence of localization, can
actually give rise to backward flows, and are simply due to
interferences between individually decaying terms.

A comparison of the population to the fluorescence (Fg(t) of
eq 6), is given in Figure 4a and 5a. The two quantities are
seen to exhibit a different behavior. In particular, the periodicity
of the backward bursts in the population does not coincide with
the recurrences in the fluorescence signal. The two quantities
are different because the fluorescence signal is obtained as the
square of a double (“coherent”) sum of terms (overs and s′,
see eqs 6 and 22, whereas the population is a result of an
“incoherent” sum (eq 4), of squares, each being a single sum
over s′ (eq 22).

The fluorescence signal recurs whenever the superposition
state returns to a region of favorable Franck-Condon overlaps

Figure 3. (a, top) Total population in the bound manifold and the
fluorescence to the ground vibrational state as a function of time for
excitation by a pulse whose central frequency is 22 500 cm-1 and
bandwidth of 50. (b, bottom) Evolution of seven of the product states
for the case studied in part a.

Figure 4. (a, top) Same as in Figure 3a for excitation with a pulse
centered at 22 430 and bandwidth of 100.(b, bottom) Same as in Figure
3b for the pulse parameters of part a.
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with one or more ground state wave functions at roughly the
classical frequency. At the shortest pulsed excitation considered
here (bandwidth of 1000, i.e., fwhm pulse duration of∼30 fs),
displayed in Figure 5, both the population and the fluorescence
develop a secondary oscillatory structure due to the interference
between energetically remote resonances.

6. Conclusions

In this paper, we have developed a uniform theory for the
preparation and decay of a system of overlapping resonances.
We have shown that in fact the very notion that one “prepares”
resonance states, which then decay, is a misguided one. The
fact that one does not prepare a resonance state whenever the
pulse bandwidth is narrower than the spectral feature associated
with a given resonance was realized in the past.12 Here we
show that this notion is wrong even if the pulse bandwidth is
energetically much broader than the resonance feature, i.e., even
in the ultrashort pulse limit. We have demonstrated that flux
in the product space appearsinstantaneouslywith the onset of
the pulse. The products space gets populated and depopulated
with the pulse due to off-resonance effects which at intial times

completely dominate the decay process. Only after the pulse
is over do we see the decay of the population of the bound
space and the buildup of the product space populations governed
by time constants which are related to the resonance spectral
features. Even at such late times the evolution of the bound
state and product space populations is far from being intuitive.
In particular, we have demonstrated the existence of bursts of
flux reversals in which the system periodically partially
recombines while undergoing a dissociative decay process.

An additional finding of this paper is that the assumption
that fluorescence measures the system autocorrelation function
is simply not true for overlapping resonances: the fluorescence,
autocorrelation and the total bound state population behave
differently.

The computations presented here may necessitate a reexami-
nation of the interpretation of past experiments where the
dissociative decay and radiationless transitions in large (and
small) molecules have been probed.

References and Notes

(1) Hall, G. G.; Levine, R. D.J. Chem. Phys.1966, 44, 1567.
(2) Levine, R. D.Quantum Mechanics of Molecular Rate Processes;

Clarendon Press: Oxford, UK, 1969.
(3) Shapiro, M.J. Chem. Phys.1972, 56, 2582.
(4) Estrada, H.; Domcke, W.Phys. reV. A 1989, 40, 1262. Gertitschke,

P. L.; Domcke, W.Phys. ReV. A 1993, 47, 1031.
(5) Desouter-Lecomte, M.; Lievin, J.J. Chem. Phys.1997, 107, 1428.
(6) Shapiro, M.J. Chem. Phys.1994, 101, 3844.
(7) Frishman, E.; Shapiro, M.Phys. ReV. A 1996, 54, 3310.
(8) (a) Rosker, M. J.; Rose, T. S.; Zewail A. H.Chem. Phys. Lett.

1988, 146, 175. (b) Rose, T. S.; Rosker, M. J.; Zewail, A. H.J. Chem.
Phys.1988, 88, 6672. (c) Rose, T. S.; Rosker, M. J.; Zewail, A. H.J. Chem.
Phys.1989, 91, 7415. (d) Zewail, A. H.Faraday Discuss. Chem. Soc.1991,
91.

(9) Vrakking, M. J.; Villeneuve, D. M.; Stolow, A.J. Chem. Phys.
1996, 105, 5647.

(10) Shapiro, M.; Vrakking, M. J.; Stolow, A.J. Chem. Phys., in press.
(11) Dumont, R.; Brumer, P.Chem. Phys. Lett.1992, 188, 565.
(12) Shapiro, M.J. Phys. Chem.1993, 97, 7396.
(13) Shapiro, M. InFemtosecond Chemistry; Manz, J., Wo¨ste, L., Eds.;

VCH Verlagsgesellschaft; Weinheim Germany; 1995; p 321.
(14) Freed, K.; Nitzan, A.J. Chem. Phys.1980, 73, 4765.
(15) Breit, G.; Bethe, H.Phys. ReV. 1954, 93, 888.
(16) Shapiro, M.Isr. J. Chem.1973, 11, 691.
(17) In contrast, conventional resonance theories which do not include

the preparation stage and simply assign the resonance a complex (Siegert)
eigenvalueEs, give rise to the exp(-Γst/2p) term which grows exponentially
for t < 0. This problem cannot be solved by simply deciding that the state
only exists fromt ) 0 onwards, because of the inherent discontinuity in
such an assumption. Moreover, much of the interesting physics derived
here via the proper inclusion of the preparation process is then lost.

(18) Abramowitz, M.; Stegun, I. A.Handbook of Mathematical Func-
tions; Dover: New York, 1965; Eqs 7.1.3, 7.1.8.

(19) Vardi, A.; Shapiro, M.J. Chem. Phys.1996, 104, 5490.
(20) Shapiro, M.; Brumer, P.J. Chem. Phys.1986, 84, 540.
(21) Brumer, P.; Shapiro, M.Chem. Phys.1989, 139, 221.
(22) Child, M. S.Mol. Phys.1976, 32, 1495.
(23) Levine, R. D.Ber. Bunsenges. Phys. Chem.1988, 92, 222.
(24) Remacle, F.; Levine, R. D.J. Phys. Chem.1991, 95, 7124. Remacle,

F.; Lorquet, J. C.; Levine, R. D.Chem. Phys. Lett.1993, 209, 315.
(25) Someda, K.; Nakamura, H.; Mies, F. H.Chem. Phys.1994, 187,

195.
(26) Seideman T.; Miller, W. H.J. Chem. Phys.1991, 95, 1768. Peskin,

U.; Reisler H.; Miller, W. H.J. Chem. Phys.1994, 101, 9672.
(27) Rom, N.; Ryaboy, V.; Moiseyev, N.J. Chem. Phys.1993, 98, 6327.

Rom, N.; Moiseyev, N.J. Chem. Phys.1993, 99, 7703.

Figure 5. (a, top)) Same as in Figure 3a for excitation with a pulse
centered at 22 430 and bandwidth of 1000.(b, bottom) Same as in
Figure 3b for the pulse parameters of part a.

9576 J. Phys. Chem. A, Vol. 102, No. 47, 1998 Shapiro


